
2 The stochastic approach
The results of this chapter can be summarised as follows:

In the non-linear stochastic models (SN and SNM) the epidemic dies out almost surely, no

matter what values the parameters take (Theorems 2.2 and 2.7). This behaviour is due to the

finite number of individuals in the system. On the other hand, if we let the number of individuals

tend to infinity in a way to be specified later, we found threshold results, depending on θ, which

give us a better insight of the development of the epidemic (Theorems 2.3 and 2.8). In the linear

stochastic models (SL and SLM) we have again threshold results depending on θ (Theorems 2.5

and 2.10). These results are analogous to Theorems 2.3 and 2.8 in the non-linear cases. Besides

that we could compute the exact value of the expectation of the number of parasites at any time in

the linear stochastic models (equations (2.5) and (2.6)). All these results must be compared with

the results using the deterministic approach (chapter 4). All results in the stochastic environment

have an analogue in the deterministic environment except Theorems 2.2 and 2.7.

2.1 The stochastic non-linear model without mortality of
humans SN

We begin with the stochastic approach in model SN, that is the stochastic,
non-linear model without mortality of humans. This model was analysed in
Barbour and Kafetzaki (1993)). The first result is frequently used in analysing
all eight models and has no obvious epidemiological interpretation.

Lemma 2.1 [Barbour and Kafetzaki (1993), Equation (2.2)] For
all k ≥ 0 we have ∑

i≥1

pik <∞.

The next result shows that in the non-linear stochastic model without
mortality of humans, the epidemic dies out with probability one no matter
what values the parameters take.

Theorem 2.2 [Barbour and Kafetzaki (1993), Theorem 2.3] In the
model SN the infection dies out with probability one, that is

P[ lim
t→∞

x(0)(t) = e0] = 1.

Remarks 1. There is no deterministic analogue of Theorem 2.2 (see The-
orems 2.3 and 4.2 as a contrast).

2. As a consequence of Theorem 2.2 the process SN is in particular ‘regu-
lar’, in the sense that it makes only finitely many transitions in any finite time
interval [0,T] almost surely.
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Remarks on the basic reproduction ratios I Let us define R(0)
0 :=

λθ/µ and R
(0)
1 := (λe log θ)/µ. These are quantities which emerge as being

critical in determining the behaviour of the models without mortality, as, for
instance, in Theorem 2.3 below. R(0)

0 is what would usually be called the ba-
sic reproduction ratio, because it denotes the average number of offspring of a
single parasite during his whole lifetime in the absence of density dependent
constraints. This can be seen in the following way: A worm has an expo-
nentially distributed lifetime with parameter µ which means that his expected
lifetime is µ−1. During such a life he makes contacts at a rate of λ per time
unit and on average these contacts result in infections with θ worms. We have
not yet found a good interpretation for R(0)

1 (see ”Remarks on the basic repro-
duction ratios II, III and IV” in this chapter for further discussions of these
questions)!

By the expression threshold behaviour we usually denote general state-
ments of the following type: If R0 > 1 the epidemic develops in deterministic
systems and if R0 < 1 the epidemic dies out. In a stochastic environment state-
ments are usually such that if R0 > 1 the epidemic has a positive probability
to develop and if R0 ≤ 1 the epidemic dies out almost surely. We are going
to see in chapters 2 and 4 that the situation in our eight models is far more
complex than that stated above.

Looking at Theorem 2.2 we see that the epidemic finally dies out almost
surely in SN no matter what values the parameters take. But the behaviour of
SN in finite time (and with M large) is quite different depending on whether
R

(0)
i , i ∈ {0, 1}, is greater or smaller than one. This is made more precise in

Theorem 2.3 Fix y ∈ N∞0 , such that 0 < Y :=
∑
j≥1 yj <∞, and suppose

that for each M > Y we have x(M,0)
j (0) = yj/M for all j ≥ 1. Then in model

SN we have the following threshold behaviour:
Case 1): θ ≤ e. Then

lim
t→∞

lim
M→∞

P
[∑

j≥1

x
(M,0)
j (t) = 0

]
= 1 if and only if R

(0)
0 ≤ 1.

Case 2): θ > e. Then

lim
t→∞

lim
M→∞

P
[∑

j≥1

x
(M,0)
j (t) = 0

]
= 1 if and only if R

(0)
1 ≤ 1.

Explanation The initial number of infected individuals stays constant and
equal to Y ; as M tends to∞, only the initial number of uninfected individuals
Mx

(M,0)
0 = M − Y grows.
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Remarks 1) The deterministic analogue of Theorem 2.3 is Theorem 4.2.
2) We let M tend to ∞ first (with t fixed). In the linear models the

contact rate λ stays the same no matter how many individuals are infected.
But in the non-linear model this contact rate is altered by multiplying it with
the proportion of uninfected λx

(M,0)
0 . As we increase M , we only increase the

initial number of uninfected individuals. The initial proportion of uninfected
tends to 1 as M tends to infinity. So we almost have a linear model (at least
in the initial phase). So it is not too surprising, that we have analogous results
to those in Theorem 2.5. Note that it is vital to let M converge to infinity first
and then we let t converge to infinity. Otherwise these probabilities would be
0 in all cases because of Theorem 2.2.

Proof of Theorem 2.3 The idea of the proof is to show that for fixed
M there exists a linear process X(0)/M which is in all components larger than
our original x(M,0), and such that, the larger we choose M , the more x(M,0)

behaves like X(0)/M . Then we use Theorem 2.5 (we do not use Theorem 2.3
to prove Theorem 2.5).

1. First we have to find that linear process X(0): For this we define a
trivariate Markov process (X(nl)(t), X(r)(t), R′(t)). “nl” stands for non-linear,
“r” stands for residual and the meaning of R′ is explained later. In fact, each of
the components in (X(nl), X(r)) are themselves infinite dimensional: The first
component is an infinite vector (X(nl)

j (t))j≥0 and the second component is an

infinite vector (X(r)
k (t))k≥1. We assume that X(nl)

j (t) ∈ N0 and X
(r)
k (t) ∈ N0

for all t, j, k. We choose the initial values to be such that X(nl)
0 (0) = M − Y ,

X
(nl)
j (0) = yj for j ≥ 1 and X

(r)
k (0) = 0 for k ≥ 1. Our aim is to construct

X(nl) and X(r) such that X(0)
j := X

(nl)
j + X

(r)
j behaves like SL for j ≥ 1. We

define the univariate, random process R′(t) to have values on the nonnegative
integers and to have initial value R′(0) = 0. We let these processes develop
according to the following rates:

(
X(nl), X(r), R′

)→ (
X(nl) + (ej−1 − ej), X(r), R′

)

at rate jµX(nl)
j ; j ≥ 1, (death of a parasite in the non-linear process)

(
X(nl), X(r), R′

)→ (
X(nl) + (ek − e0), X(r), R′

)

at rate λ(X(nl)
0 /M)

∑
u≥1X

(nl)
u puk ; k ≥ 1, (infection in the non-linear process)

(
X(nl), X(r), R′

)→ (
X(nl), X(r) + (ej−1 − ej), R′

)

at rate jµX(r)
j ; j ≥ 2, (death of a parasite in the residual process)
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(
X(nl), X(r), R′

)→ (
X(nl), X(r) − e1, R

′)

at rate µX(r)
1 , (death of a parasite in the residual process when j = 1). As can

be seen, non of the above events change the state of R′.
Let us first motivate the rates to come. Define R(u) :=

∑
j≥1X

(r)
j (u),

and N(u) :=
∑
j≥1X

(nl)
j (u). Then we define τ := inf{u : N(u) > a} for a a

(usually large) positive number to be chosen later. Our aim is to define a time-
homogeneous Poisson process R′ such that almost surely the following relation
holds:

R′(u) ≥ I[R(u) > 0]I[u < τ ]. (2.1)

As we construct X(r) such that X(0) develops according to SL, we already know
that the total rate at which infections take place in X(r) (and so in R) must be

λ
∑

k≥1

(∑

j≥1

X
(r)
j (u)pjk + (1−X(nl)

0 (u)/M)
∑

j≥1

X
(nl)
j (u)pjk

)
.

But in (2.1), the right side is 0 at time 0 and as long as u < τ increases to 1 as
soon as a first infection takes place in X(r). This happens at rate

λ(1−X(nl)
0 (u)/M)

∑

k≥1

∑

j≥1

X
(nl)
j (u)pjk

as until then R = 0. Let us have a closer look at this rate, as long as u < τ :

λ(1−X(nl)
0 (u)/M)

∑

k≥1

∑

j≥1

X
(nl)
j (u)pjk ≤ λ(1−X(nl)

0 (u)/M)
∑

j≥1

X
(nl)
j (u)

≤ λ(1− M − a
M

)
a = λa2/M

So we define a time-homogeneous Poisson process R′ of rate λa2/M coupled to
the development of R in the following way:

Define

b(u) := a2/M

−
∑

k≥1

(∑

j≥1

X
(r)
j (u)pjk + (1−X(nl)

0 (u)/M)
∑

j≥1

X
(nl)
j (u)pjk

)
.

Note that we have just shown that b(u) ≥ 0 until the first infection takes place
in the residual process and as long as u < τ . Then, if b(u) ≥ 0 we have the
following rates

(
X(nl), X(r), R′

)→ (
X(nl), X(r) + ek, R

′ + 1
)
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at rate

λ
∑

l≥1

X
(r)
l plk + λ(1− X

(nl)
0

M
)
∑

u≥1

X(nl)
u puk ; k ≥ 1,

this is an infection in the residual process. Additionally, we have the following
changes (

X(nl), X(r), R′
)→ (

X(nl), X(r), R′ + 1
)

at rate

λa2/M −
∑

k≥1

(
λ
∑

l≥1

X
(r)
l plk + λ(1− X

(nl)
0

M
)
∑

u≥1

X(nl)
u puk

)
.

Now if b < 0, we have the following rates

(
X(nl), X(r), R′

)→ (
X(nl), X(r) + ek, R

′)

at rate

λ
∑

l≥1

X
(r)
l plk + λ(1− X

(nl)
0

M
)
∑

u≥1

X(nl)
u puk ; k ≥ 1,

this is again an infection in the residual process. Additionally, we have the
following changes

(
X(nl), X(r), R′

)→ (
X(nl), X(r), R′ + 1

)

at rate λa2/M. With this construction (2.1) holds almost surely for the follow-
ing reasons: we showed that b ≥ 0 until the first infection, R′ increases too at
the first infection but does not decrease any more, additionally, note that we
look at I{R>0} and not R in (2.1).

As only the first two components of this process are important in part 1 of
the proof, we repeat for better understanding the last part of the rate at which
the first two co-ordinates change, neglecting R′:

(
X(nl), X(r)

)→ (
X(nl), X(r) + ek

)
at rate

λ
∑

l≥1

X
(r)
l plk + λ(1− X

(nl)
0

M
)
∑

u≥1

X(nl)
u puk ; k ≥ 1.

R′ is a time-homogeneous Poisson process of rate λa2/M . The reader can
easily check that X(nl)/M behaves according to SN. Let us look at the sum
X

(0)
j := (X(nl) +X(r))j for j ≥ 1. The development of X(0) is that of SL and

it is independent of M , as the rates involving M cancel. M also appears in
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the initial values, but there it only appears in the initial number of uninfected
individuals; since X(0) does not include the zero co-ordinate, it is independent
of M .

2. We now have to examine the limit

lim
M→∞

P
[∑

j≥1

x
(M,0)
j (t) = 0

]
.

For all fixed M we introduce the notation L(u) :=
∑
j≥1X

(0)
j (u), where we

still have N(u) :=
∑
j≥1X

(nl)
j (u) and R(u) :=

∑
j≥1X

(r)
j (u).

Now we fix t and define L := L(t), N := N(t) and R := R(t). Note that while
the distributions of N(u) and R(u) depend on M , the distribution of L(u) does
not depend on M . We have

P
[∑

j≥1

x
(M,0)
j (t) = 0

]
= P

[∑

j≥1

X
(nl)
j (t) = 0

]
= P

[
N = 0

]
. (2.2)

As L = N +R we have

P
[
N = 0

]
= P

[
L−R = 0

]

= P
[
L−R = 0|R = 0

]
P
[
R = 0

]
+ P

[
L−R = 0|R > 0

]
P
[
R > 0

]

= P
[
L = 0

]
+ P

[
L−R = 0|R > 0

]
P
[
R > 0

]
. (2.3)

The last equality holds because if L = 0 then R = 0 too.
The next step is to show that P

[
R > 0

]
tends to 0 as M tends to infinity.

Define a bivariate Markov process (X(0), B) such that X(0) is the SL process
and behaves as before. Additionally we add a univariate random variable B ≥
0. The initial values are X(0)

j (0) = yj for j ≥ 1 and B(0) = 0 and let us recall
that Y :=

∑
j≥1 yj . The vector (X(0), B) changes according to the following

rates:
(
X(0), B

)→ (
X(0) + (ej−1 − ej), B

)
at rate jµX(0)

j ; j ≥ 2,
(
X(0), B

)→ (
X(0) − e1, B + 1

)
at rate µX(0)

1 ; (j = 1),
(
X(0), B

)→ (
X(0) + ek, B

)
at rate λ

∑

u≥1

X(0)
u puk ; k ≥ 1,

(
X(0), B

)→ (
X(0), B + 1

)
at rate λB + λ

∑

u≥1

X(0)
u pu0.

As is easily seen, X(0) is still our linear process constructed in step 1. B cancels
almost surely every loss of an infected individual in the linear process X(0): an
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infected individual drops out of the system if a parasite dies in an individual
with only one worm and additionally B cancels infections with zero parasites
in the linear process X(0) through adding that rate in the fourth line of our
rates. Hence, if we define L̃ := L + B, then L̃ is almost surely a pure birth
process of rate λ. If L increases, L̃ increases too, but L̃ does not decrease
when L decreases; more, the growing part B of the sum L̃ = L+B contributes
increasingly to the growth of L̃.

We can now argue as follows: For positive a, to be chosen later (the reader
should think of a being much larger than Y ), we have the following relations:

P
[
N > a

] ≤ P[L̃ > a
] ≤ 1

a
E
[
L̃
]

=
1
a
Y eλt.

If we choose a such that a−1Y eλt < ε, for an arbitrary ε > 0, we can continue
as follows: As τ := inf{u : N(u) > a} ≤ ∞,

P
[
R > 0

]
= P

[
RI{t<τ} +RI{t≥τ} > 0

]

≤ P[RI{t<τ} > 0
]

+ P
[
RI{t≥τ} > 0

]

≤ P[RI{t<τ} > 0
]

+ P
[
I{t≥τ} > 0

]

≤ P[RI{t<τ} > 0
]

+ ε.

(2.4)

In the last inequality we used that N is dominated by L̃. We now have to show
that P

[
RI{t<τ} > 0

]
tends to 0 as M tends to infinity. But by (2.1)

P
[
RI{t<τ} > 0

]
= P

[
I{R>0}I{t<τ} > 0] ≤ P[R′ > 0] = 1− exp(−tλa2/M),

as the probability that there is no event in the Poisson process until time t is
exp(−tλa2/M). So, letting M tend to infinity, we have in (2.4), as ε > 0 was
chosen arbitrarily, that limM→∞ P[R > 0] = 0. Hence, from (2.2) and (2.3) we
have

lim
M→∞

P
[∑

j≥1

x
(M,0)
j (t) = 0

]
= P

[
L(t) = 0

]
.

3. We now have to examine the expression

lim
t→∞

P
[
L(t) = 0

]

to finish the proof.
The first directions (θ ≤ e and R

(0)
0 ≤ 1 or θ > e and R

(0)
1 ≤ 1) follow

immediately: We can use Theorem 2.5 because convergence to 0 a.s. implies
convergence to 0 in probability (note that {L(t) = 0} = {L(t) > 1/2}c).
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The inverse directions (θ ≤ e and R
(0)
0 > 1 or θ > e and R

(0)
1 > 1) need

the following reasoning: Let us define the random process I(t) in the following
way:

I(t) :=
{

1 if L(t) > 0
0 if L(t) = 0.

As I(t)(ω) is a decreasing function in t for each ω, limt→∞ I(t) exists a.s. and
so we can define a.s. the limit-function I∞ as follows:

I∞(ω) := lim
t→∞

I(t)(ω).

By Theorem 2.5 we have P
[
I∞ = 0] =: q < 1 under the above constraints. But

as I(t) is a decreasing function, we have P[I(t) = 0] ≤ P[I∞ = 0] = q < 1
completing the proof.

�

2.2 The stochastic linear model without mortality of hu-
mans SL

In this section the model SL (stochastic, linear, without mortality of hu-
mans) is analysed. We first want to be sure that the process SL is ‘regular’, in
the sense that it makes only finitely many transitions in any finite time interval
[0,T], almost surely. This is shown in the following

Lemma 2.4 The process X(0) that evolves according to SL is regular.

Proof of Lemma 2.4 If there are infinitely many transitions in a finite
time interval [0,T], there must be infinitely many infections too in [0,T]. But
this is impossible as can be seen by comparison with a pure birth process of
rate λ.

�

Next a result of Barbour (1994) is presented. In that paper the model SL
(stochastic, linear, without mortality of humans) is analysed. Theorem 2.5
describes the threshold behaviour in the model SL and gives the expected
number of parasites at time t:

Theorem 2.5 Let us assume that 0 <
∑
j≥1X

(0)
j (0) < ∞. Then the

following result holds:
Case 1): θ ≤ e. Then P[limt→∞

∑
j≥1X

(0)
j (t) = 0] = 1 if and only if

R
(0)
0 ≤ 1.

Case 2): θ > e. Then P[limt→∞
∑
j≥1X

(0)
j (t) = 0] = 1 if and only if

R
(0)
1 ≤ 1.
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In addition, the expected number of parasites in SL grows at an exponential
rate (λθ − µ):

E[
∑

j≥1

jX
(0)
j (t)] = (

∑

j≥1

jX
(0)
j (0))e(λθ−µ)t. (2.5)

Remark The deterministic analogue of Theorem 2.5, cases 1) & 2) is Remark
1 following Theorem 4.8; that of equation (2.5) is equation (4.7).

Proof of Theorem 2.5 Cases 1) and 2) of this theorem have been proven
in Barbour (1994) as Theorem 2.1.

(2.5) is proven as follows: Let us define M(t) :=
∑
j≥1 jX

(0)
j (t). Further

we define

c(X(0)) : =
∑

j≥1

jµX
(0)
j {(j − 1)− j}+ λ

∑

k≥1

∑

j≥1

X
(0)
j pjkk

= −µM + λθM

and

W (t) := M(t)−M(0)−
∫ t

0

c(X(0)(u))du.

In Corollary A7 of the Appendix we prove that W is a martingale. We have:

M(t) = W (t) +M(0) +
∫ t

0

c(X(0)(u))du.

Now we take the expectation, giving

E[M(t)] = M(0) +
∫ t

0

E[c(X(0)(u))]du,

since W (0) = 0. As c(X(0)(u)) = (λθ − µ)M(u) we have the integral equation

y(t) = M(0) +
∫ t

0

(λθ − µ)y(u)du

where y(t) := E[M(t)]. But this immediately leads to the equation (2.5),
completing the proof of Theorem 2.5.

�

Remarks on the basic reproduction ratios II A first important re-
mark that has to be made looking at Theorem 2.5 is as follows: Depending on
the value of θ (θ > e) it is possible that R(0)

0 > 1 and R
(0)
1 < 1. Let us assume

we are in such a situation and θ > e. This implies that the epidemic dies out
with probability one; but it means too that the expected number of parasites
tends to infinity. It is clear that in the stochastic model the number of parasites
goes to 0 too with probability 1.
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Let us look at an analogous situation in model SN. If the number of individ-
uals M is constant, the epidemic finally dies out with probability one (Theorem
2.2). We could ask ourselves whether if R(0)

0 > 1, then the expected number of
parasites tends to infinity, that is E[

∑
j≥1 jx

(M,0)
j (t)] → ∞ for t → ∞? Such

a behaviour is suggested through Remark 5) of Theorems 4.3 and 4.25. This
question is open.

But instead, let us compare this result with the results of the deterministic
approach in chapter 4: in both systems, DN and DL, we have an analogous
behaviour (Remark 5 to Theorems 4.3 and 4.25 for DN and for DL it is equation
(4.7) and Remark 1 to Theorem 4.8). But in DN and DL it is the number of
parasites (and not an expectation as in chapter 2) that tends to infinity. This
difference between the results of chapters 2 and 4 is due to the fact that in the
deterministic models the number of individuals can be any nonnegative real
number, possibly smaller than 1, while in the stochastic models we only have
natural numbers.

The remainder of chapter 2.2 comes from Barbour (1994): When θ > e

and R
(0)
1 < 1 < R

(0)
0 , the expected number of parasites E[

∑
j≥1 jX

(0)
j (t)] in-

creases with t, but, for β = 1/ log θ, E[
∑
j≥1 j

βX
(0)
j (t)] tends to zero (see proof

of Theorem 2.5, Case 2, first direction in Barbour (1994)). This suggests that
the expected number of parasites is in this case dominated by the possibility of
having a few individuals with very large parasite burdens. Thus, to understand
why λe log θ/µ = 1 emerges as a threshold, we consider what happens to indi-
viduals infected by large numbers of parasites. As time goes by, the number of
parasites carried by such an individual decreases almost exactly exponentially
at rate µ, and from time to time, at rate λ, he causes new infections, each
of which starts with almost θ times as many parasites as he currently carries.
Thus, on a logarithmic scale, his parasite burden decreases almost linearly to-
wards zero at rate µ, and each of those he infects behaves in similar fashion,
but with initial burden having a value almost log θ greater than his current
burden.

This motivates the following definition of a branching process Y with drift.
Y (t) describes the positions in R+ of a random number of particles. Each
particle drifts steadily at rate µ towards 0, and is annihilated upon reaching
0. Until this time, it gives birth to further particles according to a Poisson
process of rate λ, independently of all other particles. If a particle is born
to a parent at position x, it is initially placed at position x + log θ, and it
thereafter behaves according to the same rules governing drift, annihilation
and reproduction, independently of all other particles. We are interested in the
distribution of NY ≤ ∞, the total number of particles ever in existence. By
scaling, we can equivalently take λ′ = 1 and µ′ = 1, then setting d := λ log θ/µ
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for the translation at birth. Clearly, the larger the value of d, the larger the
values to be expected of NY . Let Ps denote the distribution conditional on
starting with a single particle at position s.

Theorem 2.6 [Barbour (1994), Theorem 3.1] If d ≤ 1/e, then we
have Ps[NY <∞] = 1 for all s, and Ed[NY ] ≤ e. If d > 1/e, Ps[NY <∞] < 1
for all s.

Remark The change at the critical value of d is quite abrupt. When d
takes the value 1/e, not only is NY almost surely finite, but its mean is also
finite (and equal to e under Pd), although, for any d > 1/e, there is a positive
probability that NY = ∞. Note that d = 1/e represents λe log θ/µ = 1 in
the notation of the original problem. This suggests the interpretation that, for
R

(0)
1 ≤ 1, the few individuals with large numbers of parasites are unable to

support the growth of X(0), but that when R
(0)
1 > 1 they can.

2.3 The stochastic non-linear model with mortality of hu-
mans SNM

In this section, the stochastic non-linear model including mortality of humans
is analysed. The following theorem should be compared with Theorem 2.2. It
shows that in the non-linear cases the epidemic dies out with probability one
no matter what values the parameters take.

Theorem 2.7 In the model SNM the infection dies out with probability
one, that is

P[ lim
t→∞

x(t) = e0] = 1.

Define T extM := inf{t : x(t) = e0}, the time until the epidemic dies out (extinc-
tion). Then

E[T extM ] ≤ 1 + erM

with r := λ− log(1− e−κ).

Remarks 1. There is no deterministic analogue of Theorem 2.7 (see The-
orems 2.8 and 4.24 as a contrast).

2. As a consequence of Theorem 2.7 the process SNM is in particular
‘regular’, in the sense that it makes only finitely many transitions in any finite
time interval [0,T] almost surely.

Proof of Theorem 2.7 First we find a lower bound for the probability
that the epidemic dies out in an arbitrary, single time-interval of length 1, given
it has not died out yet. The probability that a given person dies in the next
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time interval and the new-born does not have any infectious contacts at all in
this interval is at least (1− e−κ)e−λ > 0. The probability that this happens to
all M individuals in the same time-interval is at least [(1− e−κ)e−λ]M . So the
probability that the infection dies out in the next time-interval (given it has
not died out before) is at least pM := [(1 − e−κ)e−λ]M . There are other ways
that it can die out too, but we already have enough.

Let Bn be the event that the epidemic dies out in the time-interval [0, n+1)
for n ≥ 0. Let us define the set A := {limt→∞ x(t) = e0} = ∪i≥0Bi. We have
Bi ⊆ Bi+1. Let us look at P[Bcn]. We have to prove that P[Bcn] converges to 0
as n→∞ to show the first part of Theorem 2.7. We have

P[Bcn] = P[Bcn|Bn−1]P[Bn−1] + P[Bcn|Bcn−1]P[Bcn−1]
= P[Bcn|Bcn−1]P[Bcn−1] ≤ (1− pM )P[Bcn−1].

As a consequence, P[Bcn] ≤ (1−pM )n → 0 as n→∞, completing the first part
of the proof.

We then immediately have an upper bound for the expected time until the
epidemic dies out:

E[T extM ] ≤ 1 +
∑

n≥0

P[Bcn] ≤ 1 + erM

where r := λ− log(1− e−κ), completing the proof.
�

Let us define R0 := λθ/(µ+ κ), R1 := (λe log θ)/(µθ
κ
µ ) and R2 := λ/κ.

Looking at Theorem 2.7 we see that the epidemic finally dies out almost
surely in SNM no matter what values the parameters take. But the behaviour of
SNM in finite time (and with M large) is quite different depending on whether
Ri, i ∈ {0, 1, 2} is greater or smaller than one. This is made more precise in

Theorem 2.8 Fix y ∈ N∞0 , such that 0 < Y :=
∑
j≥1 yj <∞, and suppose

that for each M > Y we have x(M)
j (0) = yj/M for all j ≥ 1. Then in model

SNM we have the following threshold behaviour:
Case 1): log θ ≤ (1 + κ/µ)−1. Then

lim
t→∞

lim
M→∞

P
[∑

j≥1

x
(M)
j (t) = 0

]
= 1 if and only if R0 ≤ 1.

Case 2): (1 + κ/µ)−1 < log θ ≤ µ/κ. Then

lim
t→∞

lim
M→∞

P
[∑

j≥1

x
(M)
j (t) = 0

]
= 1 if and only if R1 ≤ 1.

Case 3): log θ > µ/κ. Then

lim
t→∞

lim
M→∞

P
[∑

j≥1

x
(M)
j (t) = 0

]
= 1 if and only if R2 ≤ 1.
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Explanation The initial number of infected individuals stays constant and
equal to Y ; as M tends to∞, only the initial number of uninfected individuals
Mx

(M)
0 = M − Y grows.

Remarks 1) The deterministic analogue of Theorem 2.8 is Theorem 4.24.
2) We let M tend to∞ first (with t fixed). In the linear models the contact

rate λ stays the same no matter how many individuals are infected. But in
the non-linear model this contact rate is altered by multiplying it with the
proportion of uninfected λx(M)

0 . As we increase M , we only increase the initial
number of uninfected individuals. The initial proportion of uninfected tends
to 1 as M tends to infinity. So we almost have a linear model (at least in the
initial phase). So it is not too surprising, that we have analogous results to
those in Theorem 2.10. Note that it is vital to let M converge to infinity first
and then we let t converge to infinity. Otherwise these probabilities were 0 in
all cases because of Theorem 2.7.

Proof of Theorem 2.8 The proof of this theorem is almost exactly the
same as that of Theorem 2.3. The difficult part lies in the infection process
(which is the same in both SN and SNM) and the possibility of humans to
die (in SNM) does not add any mathematical problems. We use Theorem 2.10
instead of Theorem 2.5 and here again, we do not use Theorem 2.8 to prove
Theorem 2.10.

�

Remarks on the basic reproduction ratios III Let us have a first look
at the basic reproduction ratios Ri: R0 := λθ/(µ+ κ), R1 := (λe log θ)/(µθ

κ
µ )

and R2 := λ/κ. Again, as in SN, R0 denotes the average number of offspring of
a single parasite during his whole lifetime in the absence of density dependent
constraints (the average lifetime is now (µ+ κ)−1, since a worm dies too if the
person he lives in dies). We do not have an obvious interpretation for R1. R2

is the average number of people an infected person infects during his whole
lifetime in the absence of density dependent constraints. For R2 > 1, R−1

2

denotes the probability that a pure birth and death process with contact rate
λ and death rate κ dies out, beginning with one initial infected. As has been
seen, R2 becomes critical when θ is ‘large’. It seems that then the bulk of
infected hosts die before they recover because they are infected with very large
numbers of parasites. Therefore, in that case, if we are only interested whether
the infection dies out or not, we almost have the same behaviour as in a pure
birth and death process.

2.4 The stochastic linear model with mortality of humans
SLM
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In this section the model SLM (stochastic, linear, including mortality of
humans) is analysed. We first want to be sure that the process SLM is ‘regular’,
in the sence that it makes only finitely many transitions in any finite time
interval [0,T], almost surely. This is shown in the following

Lemma 2.9 The process X that evolves according to SLM is regular.

Proof of Lemma 2.9 If there are infinitely many transitions in a finite
time interval [0,T], there must be infinitely many infections too in [0,T]. But
this is impossible as can be seen by comparison with a pure birth process of
rate λ.

�

The next result is the analogue of Theorem 2.5 when mortality of humans is
included. The threshold behaviour in model SLM is as follows:

Theorem 2.10 We assume that 0 <
∑
j≥1Xj(0) <∞. Then the following

results hold:
Case 1): log θ ≤ (1 +κ/µ)−1. Then P[limt→∞

∑
j≥1Xj(t) = 0] = 1 if and

only if R0 ≤ 1.
Case 2): (1+κ/µ)−1 < log θ ≤ µ/κ. Then P[limt→∞

∑
j≥1Xj(t) = 0] = 1

if and only if R1 ≤ 1.
Case 3): µ/κ < log θ. Then P[limt→∞

∑
j≥1Xj(t) = 0] = 1 if and only if

R2 ≤ 1.
In addition, the expected number of parasites in SLM grows with an expo-

nential rate (λθ − µ− κ):

E[
∑

j≥1

jXj(t)] = (
∑

j≥1

jXj(0))e(λθ−µ−κ)t. (2.6)

Remark The deterministic analogue of Theorem 2.10, cases 1), 2) and 3)
is Remark 4 following Theorem 4.18, that of equation (2.6) is equation (4.15).

For the proof of Theorem 2.10 we first need three technical lemmas (Lem-
mas 2.11, 2.12 and 2.13).

Lemma 2.11 Recall the definitions of the basic reproduction ratios Ri as
follows: R0 := λθ/(µ+ κ), R1 := λe log θ/(µθκ/µ) and R2 := λ/κ. Then

a) If log θ ≤ (1 + κ/µ)−1 and R0 > 1, or if R1 > 1, then R2 > 1.
b) If log θ ≤ (1 + κ/µ)−1 and R0 > 1; or if R1 > 1; or if µ/κ < log θ and

R2 > 1, then inf(0<α≤1) λθ
α/(µα+ κ) > 1.
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Proof of Lemma 2.11 a) This follows from part b) because

R2 =
λ

κ
=

λθα

µα+ κ


α=0

≥ inf
(0<α≤1)

λθα

µα+ κ
.

We do not use part a) to prove part b).
b) In the first region we have log θ ≤ (1 + κ/µ)−1 and λθ > µ + κ. We

want to show that for α ∈ (0, 1] we have λθα > µα+ κ. We have

λθα = λθθα−1 > (µ+ κ)θα−1

and therefore it is enough to show that (µ + κ)θα−1 ≥ µα + κ. We define
a := 1+κ/µ and b := 1−α ≥ 0 and then all we have to show is that aθ−b ≥ a−b
if θ ≤ e 1

a . We have finished this proof if we can show that a ≥ (a− b)e ba . But
this is obvious since dividing by a on both sides and choosing x := b/a we need
(1 − x) ≤ e−x which is true. In the second case we have λe log θ > µθ

κ
µ . We

want to show that for α ∈ (0, 1] we have λθα > µα+ κ. We have

λθα >
µθ

κ
µ+α

e log θ

and therefore we only have to show that

µθ
κ
µ+α

e log θ
≥ µα+ κ.

We define a := α + κ/µ and then all we have to show is that θa ≥ ae log θ.
We define b := a log θ and so we need to show that eb ≥ eb which is true for
all b. In the third region we have log θ > µ/κ and λ > κ. We want to show
that for α ∈ (0, 1] we have λθα > µα + κ. We have λθα > κθα and therefore
we only have to show that θα > (µ/κ)α+ 1. If we define a := α(µ/κ) and use
log θ > µ/κ we only have to show that ea ≥ a+ 1 which is true.

�
For the following lemma we define

g1(j) :=
1

1 + δj

g2(j) :=
1

1 + δjα(j)
(2.7)

and

α(j) :=





1 if j ≤ K;

1− (1− α∗)
(

1− log logK
log log j

)2

if j > K,

where 0 < α∗ < 1/6 and α∗ is made smaller if necessary later on; in what
follows, δ is always smaller than 1 and K ≥ ee

3
, even if we do not mention it

every time.
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Lemma 2.12 α(j) and g2 have the following properties:
a) α(x) log(x) increases with x.
b) α(x) decreases with x.
c) g2(x) decreases with x.
d) For x ≥ K,

0 ≤ −α′(x) ≤ 2
x log x log logK

.

e) For c, x > 1,

1 ≥ xα(cx)−α(x) ≥ 1− 2(c− 1)
log logK

.

f) There exists a constant k > 2 such that

g′′2 (x) ≤ kδxα(x)−2,

uniformly in x > 0, δ ≤ 1 and K ≥ ee3 .

Proof of Lemma 2.12 a)-d) These proofs are simple though partly te-
dious and only need elementary calculus.

e) In view of b) the first inequality is clear. For the second part we need
d) and remember that for x ≤ K we have α′(x) = 0. Then we can argue as
follows:

xα(cx)−α(x) = exp{(α(cx)− α(x)) log x} ≥ exp
{( −2(c− 1)x

x log x log logK

)
log x

}

≥ 1− 2(c− 1)
log logK

,

which ends the proof.
f) If x ≤ K, then α(x) = 1 and so we have

g′2(x) = − δ

(1 + δx)2

and

g′′2 (x) =
2δ2

(1 + δx)3
.

So we need to prove that

2δ2

(1 + δx)3
≤ kδx−1,

as α(x) = 1 for x ≤ K. This is equivalent to finding a k such that

k ≥ 2δx
(1 + δx)3

.
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As is easily seen, choosing k = 2.1 already satisfies this equation uniformly
in x > 0, δ ≤ 1 and K ≥ ee

3
. So we need to examine the second derivative of

g2 for x > K and show that the left and the right limit of g2, g
′
2 and g′′2 coincide

at x = K.
For x > K, we first calculate the derivatives of g2 and α:

g′2(x) = − δxα

(1 + δxα)2

[
α

x
+ α′ log x

]
,

where we used α := α(x). Define A := (δxα)/(1 + δxα)2 and B :=
[
(α/x) +

α′ log x
]
. Then the second derivative of g2 is g′′2 = −[BA′ +AB′], that is

g′′2 (x) = −
{
B

[
δxα(1 + δxα)2B − 2δ2x2α(1 + δxα)B

(1 + δxα)4

]

+A

[
α′x− α
x2

+ α′′ log x+
α′

x

]}

We can write this in a slightly different way:

g′′2 (x) =
δxα

(1 + δxα)2

[
2δxαB2

(1 + δxα)
−B2 − α′′ log x− 2

α′

x
+

α

x2

]

We must show that g′′2 (x) ≤ kδxα−2. This is equivalent to show that

2δxα+2B2

(1 + δxα)
− (Bx)2 − α′′x2 log x− 2xα′ + α ≤ k(1 + δxα)2. (2.8)

The second term (−(Bx)2) on the left side of (2.8) is negative and therefore
causes no problems. The last term (α) is bounded by 1 and therefore does
not cause any problems either. Then, by Lemma 2.12 d), we know that 0 ≤
−α′(x) ≤ 2/(x log x log logK) which shows that the fourth term (−2xα′) does
not cause any problems either. We therefore only have to show that there exists
a constant k such that

2δxα+2B2

(1 + δxα)
− α′′x2 log x ≤ k(1 + δxα)2

Using B2 = α2

x2 + 2αα
′ log x
x + (α′ log x)2, this leads to

2δxα+2
(
α2

x2 + 2αα
′ log x
x + (α′ log x)2

)

(1 + δxα)
− α′′x2 log x ≤ k(1 + δxα)2. (2.9)
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Using Lemma 2.12 d) once again, we see that the first term of (2.9) is under
control too. So we only need to prove that there is a k > 2 such that

−α′′x2 log x ≤ k(1 + δxα)2

Now we must calculate the second derivative of α. For the first derivative we
have

α′(x) = −2(1− α∗)
(

1− log logK
log log x

)
log logK

(log log x)2

1
log x

1
x
.

The second derivative of α is

α′′(x) = −2(1− α∗) (log logK)2

(log log x)4

1
(log x)2

1
x2

+
2(1− α∗)

(log log x)2

(
1− log logK

log log x

){( log logK
x2 log x

+
log logK
(x log x)2

)
+

2 log logK
(x log x)2(log log x)

}

Only the first (negative) term of α′′ is of interest for us as we need to find a
k > 2 such that

−α′′x2 log x ≤ k(1 + δxα)2.

But such a k exists obviously.
The reader can easily check that the left and the right limit of g2, g

′
2 and

g′′2 coincide at x = K finishing the proof.
�

Lemma 2.13 a) Suppose Sj, j ≥ 1, has the distribution Fj (see chapter 1),
that is Sj :=

∑j
i=1 Yi and the Yi are independent and identically distributed with

mean θ and variance σ2 : P[Sj = k] = pjk. Define g1(j) := (1 + δj)−1, j ≥ 0,
for δ > 0. Then the following inequality holds:

1− E[g1(Sj)] ≥ δjθ

1 + δjθ

{
1− δσ2

θ(1 + δjθ)

}
.

b) For jθ ≤ K, k as in Lemma 2.12 f) and δ ≤ k/(2K) we have

1− E[g2(Sj)] ≥ δjθ

1 + δjθ

{
1− k2σ2

θK

}
.

c) For δ(jθ)α(jθ) ≤ 1, k as in Lemma 2.12 f) and s(k) a constant such
that s(k)k ≥ 8 and

(
1−

√
2/s(k)k

)2 ≥ 3/s(k) we have

1− E[g2(Sj)] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1− ks(k)σ2

θ2j

}
.
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d) Suppose δ is chosen so small that, if j satisfies δ(jθ)α(jθ) > 1, then
α(j) ≤ 2α∗ < 1/3 must be satisfied too (see the definition of α(j) for a definition
of α∗). Then, for j such that δ(jθ)α(jθ) > 1 is satisfied we have

1− E[g2(Sj)] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1−O(j−2/3)

}
.

Remark Lemma 2.13 allows us in four situations to replace E[g(Sj)] by
g(jθ) with only small impact.

Proof of Lemma 2.13 a) We have to prove that

1− E[g1(Sj)] ≥ δjθ

1 + δjθ

{
1− δσ2

θ(1 + δjθ)

}
.

For any x, y ≥ 0,

1
1 + δx

− 1
1 + δy

=
δ(y − x)
(1 + δx)2

− δ2(y − x)2

(1 + δx)2(1 + δy)

≥ δ(y − x)
(1 + δx)2

− δ2(y − x)2

(1 + δx)2,

so that

1−g1(y) = 1− 1
1 + δx

+
1

1 + δx
− 1

1 + δy
≥ δx

(1 + δx)
+
δ(y − x)
(1 + δx)2

− δ
2(y − x)2

(1 + δx)2
.

Hence, taking y = Sj and x = jθ, it follows that

1− E[g1(Sj)] ≥ δjθ

1 + δjθ
− δ2jσ2

(1 + δjθ)2

=
δjθ

1 + δjθ

{
1− δσ2

θ(1 + δjθ)

}
.

b) Take any X ∈ (0,K), and consider the parabola

y(x) := (1− g2(X))− (x−X)g′2(X)− 1
2

(x−X)2kδ/K,

for k as in Lemma 2.12 f). We show that y(x) ≤ 1−g2(x) for all x, independently
of the choice of X. It is immediate that 1 − g2(x) ≥ 0 for all x. Then, as the
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leading term of the parabola has a negative sign, we can argue as follows: First,
the smaller root of y(x) = 0 is at least as large as

X2 := X −
√

2(1− g2(X))
kδ/K

.

So, for all x ≤ X2 we have y(x) ≤ 1 − g2(x) because there y(x) ≤ 0. Second,
y(X) = 1− g2(X) and y′(X) = −g′2(X). We thus have to check that y′′(x) ≤
−g′′2 (x) for all x > X2 and we are finished.
For x < K we have g′′2 (x) ≤ 2δ2(1 + δx)−3 ≤ 2δ2. Now since δ ≤ k/(2K)
we therefore have supx<K g′′2 (x) ≤ kδ/K. By Lemma 2.12 f) we also have
supx≥K g′′2 (x) ≤ kδ/K, and so −g′′2 (x) ≥ −kδ/K = y′′(x) for all x > 0. Hence

1− g2(x) ≥ (1− g2(X))− (x−X)g′2(X)− 1
2

(x−X)2kδ/K

for all x and X. Now choose x = Sj and X = jθ, giving

1− E[g2(Sj)] ≥ (1− g2(jθ))− 1
2
jσ2kδ/K ≥ δjθ

1 + δjθ

{
1− k2σ2

θK

}
,

because jθ ≤ K and δ ≤ k/(2K), which ends the proof of b).

c) and d) For results c) and d) we need some preparation just as in b):
Take any X > 0, and consider the parabola

z(x) := (1− g2(X))− (x−X)g′2(X)− 1
2

(x−X)2s(k)kδXα(X)−2

for s(k) a constant yet to be determined and k as in Lemma 2.12 f). We show
that z(x) ≤ 1 − g2(x) for all x, if s(k) is chosen large enough, independently
of the choice of X. It is immediate that 1 − g2(x) ≥ 0 for all x. Then, as
the leading term of the parabola has a negative sign, we can argue as follows:
First, the smaller root of z(x) = 0 is at least as large as

X1 := X −
√

2(1− g2(X))
s(k)kδXα(X)−2

≥ X −
√

2X2

s(k)k
= X

(
1−

√
2

s(k)k

)
.

So, for all x ≤ X1 we have z(x) ≤ 1 − g2(x) because there z(x) ≤ 0. Second,
z(X) = 1 − g2(X) and z′(X) = −g′2(X). We thus have to check that z′′(x) ≤
−g′′2 (x) for all x > X1 and we are finished. By Lemma 2.12 f) we have g′′2 (x) ≤
kδX

α(X1)−2
1 for all x ≥ X1 and so

z′′(x) = −s(k)kδXα(X)−2 ≤ −kδXα(X1)−2
1 ≤ −g′′2 (x)
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if we can show that

kδX
α(X1)−2
1 ≤ s(k)kδXα(X)−2. (2.10)

So we need to prove (2.10). Pick any s := s(k) such that sk ≥ 8: then
X1 ≥ X/2, and hence, from Lemma 2.12 b) and e),

1 ≥ Xα(X)−α(X1) ≥ Xα(X)−α(X/2) ≥ 1− 2
log logK

≥ 1
3
,

uniformly in X > 0, provided that K > ee
3
. Then, for (2.10) to hold, it is

enough that (
1−

√
2
sk

)−2

≤ s

3
,

as can be arranged by picking s = s(k) larger if necessary. For this choice of s,

1− g2(x) ≥ (1− g2(X))− (x−X)g′2(X)− 1
2

(x−X)2s(k)kδXα(X)−2, (2.11)

whatever the value of x and X.

After this preparation we can proceed to c), and d):
c) Now take X = jθ and x = Sj in (2.11). This yields

1− g2(Sj) ≥ (1− g2(jθ))− (Sj − jθ)g′2(jθ)− 1
2

(Sj − jθ)2s(k)kδ(jθ)α(jθ)−2,

and hence

1− E[g2(Sj)] ≥ (1− g2(jθ))− 1
2
jσ2s(k)kδ(jθ)α(jθ)−2. (2.12)

For δ(jθ)α(jθ) ≤ 1 we have

(1− g2(jθ))− 1
2
jσ2s(k)kδ(jθ)α(jθ)−2 ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1− ks(k)σ2

θ2j

}

and therefore c) follows from (2.12).

d) In the situation of d), using Lemma 2.12 e), we have

(1− g2(jθ))− 1
2
jσ2s(k)kδ(jθ)α(jθ)−2 ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1−O(j−2/3)

}

and therefore d) follows from (2.12).
�
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Proof of Theorem 2.10 In part A) we prove extinction in all three cases
(1) to 3)) if the relevant Ri ≤ 1. In part B) we prove that there is a positive
probability that the epidemic develops in all three cases (1) to 3)) if the relevant
Ri > 1. In part C) we prove the fourth result.

A) Let us define Mβ(t) :=
∑
j≥1 j

βXj(t). Further we define

cβ(X) :=
∑

j≥1

jµXj{(j − 1)β − jβ}+ λ
∑

k≥1

∑

j≥1

Xjpjkk
β − κ

∑

j≥1

jβXj ,

and

Wβ(t) := Mβ(t)−Mβ(0)−
∫ t

0

cβ(X(u))du.

In Corollary A8 of the Appendix we prove that for each 0 < β ≤ 1, Wβ(t) is
an It-martingale where Is := σ{X(u), 0 ≤ u ≤ s}.

In the first part of A) we assume that R0 ≤ 1. For β = 1 (we suppress the
“1” in the next few steps) we can argue as follows (W (0) = 0):

M(t) = W (t) +M(0) +
∫ t

0

c(X(u))du. (2.13)

Because W is a martingale, we therefore have for 0 < s < t:

E[M(t)|Is] = W (s) +M(0) + E[
∫ t

0

c(X(u))du|Is],

and so finally by using again the definition of W (s):

E[M(t)|Is] = M(s) + E[
∫ t

s

c(X(u))du|Is]. (2.14)

But c(X(u)) = (λθ − µ− κ)M(u), and so we can derive

E[M(t)|Is] = M(s) +
∫ t

s

(λθ − µ− κ)E[M(u)|Is]du.

So E[M(t)|Is] ≤ M(s) for 0 < s < t if R0 ≤ 1 which means that M is a
nonnegative supermartingale.

Now we observe that each X ∈ N∞\{0}∞ is transient. The communication
structure of a Markov process divides the set of states into equivalence-classes.
If a class is not closed, it is automatically transient. Here the set N∞\{0}∞
is an equivalence-class and is not closed (one can leave it by going to {0}∞,
which is a separate absorbing class), and so each X ∈ N∞\{0}∞ is transient.
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But for each K the set {X ∈ N∞\{0}∞|∑j≥1 jXj ≤ K} is finite and
transient, and hence is only visited finitely often a.s.. Hence it follows that
limt→∞

∑
j≥1 jXj(t) = limt→∞M(t) is almost surely either 0 or ∞.

Now, by the nonnegative (super)-martingale convergence theorem (see Re-
vuz and Yor (1991), Corollary 2.11, § 2, Chapter II for example), we can con-
clude that M converges almost surely towards an a.s finite random variable
which therefore must be 0, implying P[limt→∞

∑
j≥1Xj(t) = 0] = 1 if R0 ≤ 1

no matter what value θ has. This finishes the first direction (R0 ≤ 1) of the
proof of 1) and those situations of 2) and 3) where R0 ≤ 1.

In the second part of A) we can therefore assume that R0 > 1. We start
with equation (2.14). Now β becomes vital for the proof and the reader can
easily check that for any β ∈ (0, 1] the calculations run through until equation
(2.14). So we have

E[Mβ(t)|Is] = Mβ(s) + E[
∫ t

s

cβ(X(u))du|Is].

Now we prove that for each β ∈ (0, 1] we have cβ(X) ≤ (λθβ − βµ − κ)Mβ .
This goes as follows:
The function f(y) := yβ is concave if β ∈ [0, 1]. So for y1, y2 we have

f(y1) ≤ f(y2) + f ′(y2)(y1 − y2).

If we choose y1 = j − 1, y2 = j we therefore get

{(j − 1)β − jβ} ≤ −βjβ−1,

and so we can derive
∑

j≥1

jµXj{(j − 1)β − jβ} ≤ µ
∑

j≥1

jXj(−βjβ−1) ≤ −µβ
∑

j≥1

jβXj .

Using Jensen’s inequality for concave functions we have
∑
l≥0 pjll

β ≤ (jθ)β .
So

λ
∑

l≥1

∑

j≥1

Xjpjll
β = λ

∑

j≥1

Xj

∑

l≥1

pjll
β ≤ λθβ

∑

j≤1

jβXj ,

and so looking at the definition of cβ we can conclude

cβ(X) =
∑

j≥1

jµXj{(j − 1)β − jβ)}

+λ
∑

l≥1

∑

j≥1

Xjpjll
β − κ

∑

j≥1

jβXj

≤ (λθβ − βµ− κ)
∑

j≥1

jβXj .
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We are free to choose β ∈ (0, 1). We want to argue just as we did in the first part
of A) mutatis mutandis, for which it is enough to show that (λθβ−µβ−κ) ≤ 0
under the constraints of the theorem in cases 2) and 3) for suitably chosen β.
Once accomplished, the proof of part A) is complete.

For case 2) we choose β = β0 := (1/ log θ) log
(
µ/(λ log θ)

)
. Elementary

computations show that as R0 > 1, R1 ≤ 1 and (1 + κ/µ)−1 < log θ ≤ µ/κ,
we have β0 ∈ (0, 1) and λθβ0 − β0µ− κ < 0. So this ends the proof of the first
direction (R1 ≤ 1) of 2).

Case 3) is even simpler: µ/κ < log θ and therefore θ > 1. Besides that we
have λ < κ. We have to find a β ∈ (0, 1) such that λθβ − βµ − κ < 0. But
this is clear (β → 0 finally makes it). This ends the proof of the first direction
(R2 ≤ 1) of 3).

B) This proof consists of three parts. In part one (B1)) we derive the
general strategy; in B2) we treat the case where θ ≤ 1, and in B3) we treat the
remaining case (θ > 1).

B1) We think in terms of a discrete generation branching process with
types j = 1, 2, 3, . . .. At each generation, each individual dies, an individual
of type j being replaced either by one of type j − 1 (death of a parasite)
with probability jµ/(λ + jµ + κ) , or by one of type j and another of type k
(infection) with probability λpjk/(λ+ jµ+ κ), or not replaced at all (death of
an individual) with probability κ/(λ+ jµ+ κ) and type 0 individuals are not
counted.

We first want to explain why it is justified to examine this discrete time
branching process with such a structure instead of our original process X. The
final aim is to show that the process X does not die out with probability one
in the cases where the relevant Ri’s are greater than 1. We can easily see that
each of the two processes, X and the discrete branching process, eventually
becomes extinct whenever the other one does. Suppose X dies out at a time
t0. Now as X is a regular process by Lemma 2.9, with probability one there
are only finitely many transitions in that process. So there can only be finitely
many transitions in the discrete branching process and therefore it dies out
too. On the other hand, we suppose the discrete branching process dies out by
generation n. Then process X must eventually die out too, except if there is
at least one individual that remains alive but makes no transitions. But this
means that an exponentially distributed random variable with a rate of at least
(λ+ κ+ µ) does not have a finite value with positive probability which is not
possible. So we may examine the discrete process we constructed above.

Without loss of generality, we begin with only one infected individual with
j parasites. This is justified because of the linearity of the process X; we show
that even so the probability of extinction is smaller than 1. Then, if

q(n)(j) := P[ extinction by generation n |X(0) = ej ],
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consideration of the first generation shows that q(n+1) = Tq(n), where we have
(Tf)(0) = 1 and

(Tf)(j) =[jµ/(λ+ jµ+ κ)]f(j − 1) + [λ/(λ+ jµ+ κ)]f(j)E[f(Sj)]
+ [κ/(λ+ jµ+ κ)], j ≥ 1,

where Sj has the distribution Fj (see chapter 1), that is Sj :=
∑j
i=1 Yi and

the Yi are independent and identically distributed with mean θ and variance
σ2 : P[Sj = k] = pjk. Clearly, q(0)(0) = 1 and q(0)(j) = 0 for j ≥ 1, and

q(n)(j) ↑ q(j) := P[ eventual extinction |X(0) = ej ].

We wish to show that q(j) < 1 for j ≥ 1 under the conditions stated in the
theorem.

First observe that, if f ≥ h in the sense that f(j) ≥ h(j) for all j ≥ 0,
then Tnf ≥ Tnh for all n ≥ 1 also. Hence, if we can find any f such that
f ≥ q(0) and Tf ≤ f , it follows that f ≥ q also. If, in addition, f(j) < 1 for
all j ≥ 1, the same must be true of q. The remainder of the proof consists of
finding a suitable function f .

But rather that looking for such an f directly, we look for a transformation
of f . The heuristic idea is as that, for j very large, the probability q(j) must
be approximately κ/λ. That is, if we start with only one infected individual
having a huge parasite burden, all infected individuals in the initial stages have
large parasite burdens, and the only way that they then lose infectiousness is
through death, since it takes much too long for the parasites to all die. Then
the initial stages are well described by a pure birth and death process with
birth rate λ and death rate κ, for which the probability of extinction is κ/λ.
Lemma 2.11 a) guarantees us that this ratio is always smaller than 1 (in those
cases relevant to us in part B) of the proof). So we expect that

lim
j→∞

q(j) =
κ

λ
.

For smaller values of j we expect values for q(j) which are larger, because there
are initially fewer parasites in the process, and for j = 0 we must even have
q(0) = 1. We look for an f which is almost 1 if j is small and then decreases
to the final limit κ/λ as j tends to infinity. So define

f(j) := (1− κ

λ
)g(j) +

κ

λ

and look for a g such that g(0) = 1 and g(j) for j ≥ 1 decreases slowly to 0.
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What constraints must g satisfy in order that f should satisfy the con-
ditions we asked for above? Let T operate on f successively, and define
f (n) := Tnf ; set f (n) = (1− κ/λ)g(n) + κ/λ. Then g(n) = T̃ng, where

T̃ g(j) =
jµ

λ+ jµ+ κ
g(j − 1) +

κ

λ+ jµ+ κ
g(j)

+
κ

λ+ jµ+ κ
E[g(Sj)] +

λ− κ
λ+ jµ+ κ

g(j)E[g(Sj)], j ≥ 1.

We must be sure that if we find a g such that for all j ≥ 1 the three conditions

g(0) = 1; g(j) < 1; and T̃ g ≤ g

are satisfied, then the corresponding conditions are true for f , where f(j) :=
(1− (κ/λ))g(j) + (κ/λ). The first two conditions are clearly satisfied: f(0) = 1
and f(j) < 1 for j ≥ 1. The third condition is satisfied because

Tf = (1− κ/λ)T̃ g + κ/λ ≤ (1− κ/λ)g + κ/λ = f.

As a conclusion of part B1) of the proof we now see that we have to find a
(nonnegative) g such that for all j ≥ 1 the following conditions

g(0) = 1; g(j) < 1; and T̃ g ≤ g

are satisfied. The third condition can be explicitly rewritten as follows:

jµ
(
g(j − 1)− g(j)

)
+ κ
(
1− g(j)

) ≤ (1−E[g(Sj)])
(
κ− g(j)κ+ λg(j)

)
, (2.15)

and if we talk about a g satisfying condition (2.15), we mean that g satisfies
g(0) = 1 and g(j) < 1 for j ≥ 1 too.

The computations that follow in B2) and B3) are awkward because we
want to replace the expression E[g(Sj)] in (2.15) by g(θj). This is justified up
to a small error, but we therefore have to keep the error under control.

B2) In this part of the proof we suppose that θ ≤ 1. We now have to
find a (nonnegative) g such that condition (2.15) is satisfied. We try g1(j) :=
(1 + δj)−1, as defined in (2.7), for δ > 0 to be chosen later. With this choice
of g and using Lemma 2.13 a) we see that (2.15) is satisfied if

µ

1 + δ(j − 1)
+ κ ≤ θ

1 + δjθ

{
1− δσ2

θ(1 + δjθ)

}
(κδj + λ)
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is satisfied. This equation is equivalent to

µ
1 + δjθ

1 + δ(j − 1)

{
1− δσ2

θ(1 + δjθ)

}−1

+ κ

{
(1 + δjθ)

{
1− δσ2

θ(1 + δjθ)

}−1

− θδj
}
≤ λθ.

As R0 > 1 we can define c := λθ − µ − κ > 0. Then the above inequality is
equivalent to

µ
1 + δjθ

1 + δ(j − 1)

{
1− δσ2

θ(1 + δjθ)

}−1

− µ

+ κ

{
(1 + δjθ)

{
1− δσ2

θ(1 + δjθ)

}−1

− θδj
}
− κ ≤ c

which is in term equivalent to

µδ
(θ + σ2 − δσ2) + j(θ2 − θ + σ2δ + δθ2) + j2(δθ3 − δθ2)

(θ − δσ2 − δθ + δ2σ2) + j(δθ2 + δθ − σ2δ2 − δ2θ2) + j2θ2δ2

+ κδ
σ2 + jδθσ2

θ + δjθ2 − δσ2
≤ c.

(2.16)

We now examine the first term of the left side of (2.16). As θ ≤ 1 we have
(δθ3 − δθ2) ≤ 0 (third term in the numerator). Now we choose δ < min

(
(θ −

θ2)/(θ2 +σ2), θ/(σ2 + θ)
)
. With this choice, θ2− θ+σ2δ+ δθ2 (second term in

the numerator) is smaller than or equal to 0 and each term in the denominator
is positive for all j ≥ 1. So the first term of the left side of (2.16) is smaller
than or equal to

µδ
θ + σ2 − δσ2

θ − δσ2 − δθ + δ2σ2
.

This term does not depend on j and so it is easily seen that δ can be made so
small that the following inequality is satisfied

µδ
θ + σ2 − δσ2

θ − δσ2 − δθ + δ2σ2
<
c

2
.

Proceeding to the second part, choosing δ ≤ θ/2σ2 we have

κδ
σ2 + jδθσ2

θ + δjθ2 − δσ2
≤ 2κδ

σ2(1 + 2jδθ)
θ(1 + 2jδθ)

≤ c

2
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for all j ≥ 1 if we choose δ ≤ cθ/4κσ2.
Combined, (2.16) is satisfied for all j ≥ 1 which ends the proof of part

B2).

B3) In this part of the proof we suppose that θ > 1. Again, we have to
find a (nonnegative) g such that condition (2.15) is satisfied.

In this part we cannot choose the simple function g1(j) := (1 + δj)−1 as
before, because (2.15) is not satisfied for all j no matter how we choose δ.
Instead we define as in (2.7)

g2(j) :=
1

1 + δjα(j)

for δ > 0 to be chosen later and

α(j) :=





1 if j ≤ K;

1− (1− α∗)
(

1− log logK
log log j

)2

if j > K

where α∗ < 1/6 is made smaller if necessary later on. Besides that, in what
follows, δ is always smaller than 1 and K ≥ ee

3
even if we do not mention it

every time.
We frequently force δ to be small, depending on some parameters such as

K. On the other hand we force K to be large, depending on various parameters.
The reader can easily check that we never force K to be large depending on δ
because this could lead to contradictions: in fact, we first choose an α∗ and
then construct α with a final K, then we choose a J (see B3.2)) and then choose
δ appropriately, although these steps are mixed together in the proof!

This construction of g2 with an α(j) as exponent in a term of the denom-
inator leads to a g with the same decay as g1 as long as j ≤ K and then the
decay is smaller. Heuristically spoken g2 is (in comparison to g1) somehow
“lifted” over a critical region until it finally decays to 0 at a much slower rate
than g1. But the reader should be aware of the fact that for all j ≥ 0 we
nevertheless have g2(j) < g2(j − 1), as shown in Lemma 2.12.

With this choice of g we see that (2.15) is satisfied if

jµ

[
g2(j − 1)
g2(j)

− 1
]

+ κδjα(j) ≤ (1− E[g(Sj)])(κδjα(j) + λ) (2.17)

is satisfied. Again, if we talk about a g satisfying condition (2.17), we mean
that g satisfies g(0) = 1 and g(j) < 1 for j ≥ 1 too.

We introduce three regions for j and so B3) consists of 3 parts itself:
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B3.1) Here we presume that 1 ≤ j ≤ K/θ. Then as θ > 1 we are in a
region where g2 and g1 are identical (α(j) = 1) and so we have

g2(j − 1)
g2(j)

− 1 ≤ δ;

using Lemma 2.13 b), it is enough to show that

µ+ κ ≤ θ

1 + δjθ

{
1− k2σ2

θK

}
(κδj + λ) (2.18)

for (2.17) to be satisfied. Until now, we need δ < δ1 := min
(
1 , k/(2K)

)
. In

all three regions we have R0 > 1 and so we can define c := λθ − µ − κ > 0.
(2.18) is then equivalent to

µδjθ +
κσ2k2δj

K
+
λσ2k2

K
≤ c. (2.19)

With the choices δ < δ2 := min
(
δ1 , c/(3Kµ) , (cθ)/(3κk2σ2)

)
and K ≥

K1 := max
(
(3k2σ2λ)/c , ee

3)
equation (2.19) is satisfied which ends the proof

of B3.1).

B3.2) Here we presume that K/θ < j ≤ J + 1, with J := J(K) such that
α(J) ≤ 2α∗. Elementary calculations show that

g2(j − 1)
g2(j)

− 1 ≤ δ(jα(j) − (j − 1)α(j−1)
) ≤ δα(j − 1)(j − 1)α(j−1)−1. (2.20)

We choose δ < δ3 := min
(
δ2 , (KJθ)−1

)
. Then Lemma 2.13 c) can be applied.

As δ < (KJθ)−1 we can incorporate the denominator 1+δ(jθ)α(jθ) of the right
side of Lemma 2.13 c) in the correction term (1−O(K−1)) which allows us to
rewrite this lemma in the following way:

1− E[g2(Sj)] ≥ δ(jθ)α(jθ)(1−O(K−1)).

Together with (2.20) we see that (2.17) is satisfied if

jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j) ≤ (jθ)α(jθ)(1−O(K−1))(κδjα(j) + λ)

is satisfied. The term κδjα(j) on the right side is of order O(K−1) and so we
skip it, we do not need it. We therefore have to show that

jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j) ≤ λ(jθ)α(jθ)(1−O(K−1)) (2.21)
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is satisfied. If we can show that

λ(jθ)α(jθ)(1−O(K−1))
jµα(j − 1)(j − 1)α(j−1)−1 + κjα(j)

≥ λθα(j)

µα(j) + κ
(1−O((log logK)−1))

≥ 1,
(2.22)

then (2.21) is satisfied. The last inequality of (2.22) is surely true by Lemma
2.11 b) for all K large enough and so we can concentrate on the first inequality.
The first inequality is true if we can show that the following two inequalities
hold:

α(j)(jθ)α(jθ)(1−O(K−1)) ≥ θα(j)(1−O((log logK)−1))jα(j−1)(j−1)α(j−1)−1

(2.23)
and

(jθ)α(jθ)(1−O(K−1)) ≥ θα(j)(1−O((log logK)−1))jα(j). (2.24)

Equation (2.23) is satisfied because the following three relations (2.25), (2.26)
and (2.27) hold. Because of Lemma 2.12 d), we have

α(j)
α(j − 1)

= 1− (α(j − 1)− α(j)
) 1
α(j − 1)

≥ 1− 2
α(j − 1)(j − 1) log(j − 1) log logK

.

(2.25)

Then, again by Lemma 2.12 d), we have

θα(jθ)−α(j) = exp([α(jθ)− α(j)] log θ)

≥ 1 + [α(jθ)− α(j)] log θ ≥ 1− log θ
2j(θ − 1)

j log j log logK
.

(2.26)

Finally, again by Lemma 2.12 d) we can derive

jα(jθ)−1

(j − 1)α(j−1)−1
≥ (j − 1)α(jθ)−α(j−1)

= exp
(
log(j − 1)[α(jθ)− α(j − 1)]

)

≥ 1 + log(j − 1)[α(jθ)− α(j − 1)]

≥ 1− log(j − 1)
2(1 + j(θ − 1))

(j − 1) log(j − 1) log logK
.

(2.27)

Therefore (2.23) is satisfied. Furthermore, (2.26) and Lemma 2.12 e) show
immediately that (2.24) is satisfied, which finishes the proof of B3.2)
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B3.3) Finally we presume that j > J + 1. By looking at the derivative of
jα(j) and using Lemma 2.12 b) we immediately gain

g2(j − 1)
g2(j)

− 1 ≤
(

δ(j − 1)α(j−1)

1 + δ(j − 1)α(j−1)

)
α(j − 1)
(j − 1)

.

For j > J + 1, we first have δ(jθ)α(jθ) ≤ 1 and then we get into the area
where δ(jθ)α(jθ) > 1. But the inequality of Lemma 2.13 d) is weaker than the
inequality of Lemma 2.13 c). So, after making δ even smaller if necessary, we
may use

1− E[g2(Sj)] ≥ δ(jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1−O(j−2/3)

}

during the whole part of B3.3). Again, for the last time we want inequality
(2.17) to be satisfied. All we need to show is therefore that

jµ

(
(j − 1)α(j−1)

1 + δ(j − 1)α(j−1)

)
α(j − 1)
(j − 1)

+ κjα(j)

≤ (jθ)α(jθ)

1 + δ(jθ)α(jθ)

{
1−O(j−2/3)

}
(κδjα(j) + λ).

(2.28)

We want to get rid of the denominators: Equation (2.28) is equivalent to the
following long expression:

jµ(j − 1)α(j−1)α(j − 1) + jµ(j − 1)α(j−1)α(j − 1)δjα(jθ)θα(jθ)

+ κjα(j)(j − 1) + κjα(j)δ(j − 1)α(j−1)+1 + κjα(j)+α(jθ)δθα(jθ)(j − 1)

+ κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ)

≤ (1−O(j−2/3)
)(
κjα(j)+α(jθ)δθα(jθ)(j − 1) + (j − 1)jα(jθ)θα(jθ)λ

+ κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ) + jα(jθ)θα(jθ)λ(j − 1)α(j−1)+1δ

)
.

This is equivalent to

jµ(j − 1)α(j−1)α(j − 1) + jµ(j − 1)α(j−1)α(j − 1)δjα(jθ)θα(jθ)

+ κjα(j)(j − 1) + κjα(j)δ(j − 1)α(j−1)+1

≤ (1−O(j−2/3)
)(

(j − 1)jα(jθ)θα(jθ)λ+ jα(jθ)θα(jθ)λ(j − 1)α(j−1)+1δ

)

−O(j−2/3)
(
κjα(j)+α(jθ)δθα(jθ)(j − 1) + κjα(j)+α(jθ)(j − 1)α(j−1)+1δ2θα(jθ)

)
.

(2.29)
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This inequality is satisfied if the following two inequalities are satisfied:

jµα(j − 1)jα(jθ)θα(jθ) + κjα(j)(j − 1)

≤ (1−O(j−2/3)
)(
jα(jθ)θα(jθ)λ(j − 1)

)

−O(j−2/3)κjα(j)+α(jθ)(j − 1)δθα(jθ),

(2.30)

(we have divided by δ(j − 1)α(j−1)) and

jµ(j − 1)α(j−1)α(j − 1) + κjα(j)(j − 1)

≤ (1−O(j−2/3)
)(

(j − 1)jα(jθ)θα(jθ)λ
)

−O(j−2/3)κjα(j)+α(jθ)δθα(jθ)(j − 1).

(2.31)

The separation of inequality (2.29) is such that in inequality (2.30) we have all
terms with a j to the power of “1 plus two α’s” except in the last term where
we have “1 plus three α’s”; in inequality (2.31) we have all terms with a j to
the power of “1 plus one α” except in the last term where we have “1 plus two
α’s”.
We first show that (2.30) is satisfied. We divide inequality (2.30) by j1+α(j).
Then it is enough to show that the following inequality is satisfied:

µα(j − 1)θα(jθ) + κ

≤ (1−O(j−2/3)
)(
jα(jθ)−α(j)θα(jθ)λ(1−O(j−1))

)

−O(j−2/3)κjα(jθ)δθα(jθ).

We can apply Lemma 2.12 e) to the right hand side, showing that it is enough
to have

µα(j − 1)θα(jθ) + κ

≤ (1−O(j−2/3)
)(

(1−O(1/ log logK))θα(jθ)λ(1−O(j−1))
)

−O(j−2/3)κjα(jθ)δθα(jθ).

As α(J) ≤ 2α∗ < 1/3, the last term tends to 0. On the other hand, we have
λ > κ. So, up to asymptotics in j, we only need to ensure that

µα(j − 1)θα(jθ) + κ < λθα(jθ)

for j > J + 1. As θ > 1, we only have to make α∗ small enough; then the
inequality above is satisfied, and hence (2.30) is satisfied also.
We now have to show that (2.31) is satisfied too. But (2.31) is almost the same
as (2.30); it is enough to show that, for large j, we have

(j − 1)α(j−1) ≤ jα(jθ)θα(jθ).
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We have
jα(j−1)−α(jθ) = exp(log j[α(j − 1)− α(jθ)])

≤ exp
( 2 log j(1 + j(θ − 1))

(j − 1) log(j − 1) log logK
)

which is near 1 for K large and is therefore finally smaller than θα(jθ). This
shows that (2.31) is satisfied too. This ends the proof of B3.3) and therefore
the proof of part B).

C) We can use equation (2.13) (β = 1) and take the expectation. We thus
get

E[M(t)] = M(0) +
∫ t

0

E[c(x(u))]du.

As c(X(u)) = (λθ − µ− κ)M(u) we have the integral equation

y(t) = M(0) +
∫ t

0

(λθ − µ− κ)y(u)du

where y(t) = E[M(t)]. But this immediately leads to (2.6) which finishes the
proof of Theorem 2.10.

�

Remarks on the basic reproduction ratios IV A first important
remark that has to be made looking at Theorem 2.10 is as follows: Depending
on the value of θ it is possible that R0 > 1 and R1 < 1 or R2 < 1 respectively.
Let us assume we are in such a situation and log θ > (1 +κ/µ)−1. This implies
that the epidemic dies out with probability one; but it means too that the
expected number of parasites tends to infinity. It is clear that in the stochastic
model the number of parasites goes to 0 too with probability 1.

Let us look at an analogous situation in model SNM. If the number of
individuals M is constant, the epidemic finally dies out with probability one
(Theorem 2.7). We could ask ourselves whether if R0 > 1, then the expected
number of parasites tends to infinity, that is E[

∑
j≥1 jx

(M)
j (t)]→∞ for t→∞?

Such a behaviour is suggested through Remark 5) of Theorem 4.25. This
question is open.

But instead, let us compare this result with the results of the deterministic
approach in chapter 4: in both systems, DNM and DLM, we have an analogous
behaviour (Remark 5 to Theorem 4.25 for DNM and for DLM it is equation
(4.15) and Remark 4 to Theorem 4.18). But in DNM and DLM it is the explicit
number of parasites (and not an expectation as in chapter 2) that tends to
infinity. This difference between the results of chapters 2 and 4 is due to the
fact that in the deterministic models the number of individuals can be any
nonnegative real number while in the stochastic models we only have natural
numbers.
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